Notations:
1. Options shown in green color and with ✔ icon are correct.
2. Options shown in red color and with ✗ icon are incorrect.

The solution of the ordinary differential equation \(\frac{dy}{dx} + \frac{y}{x} \log y = \frac{y}{x^2} (\log y)^2 \) is:

Options:

1. ✗ \(\frac{1}{x \log x} = \frac{1}{2x^2} + c \)

2. ✗ \(\frac{1}{y \log x} = \frac{1}{2x^2} + c \)
3. \[\frac{1}{y \log y} = \frac{1}{2x^2} + c \]

4. \[\frac{1}{x \log y} = \frac{1}{2x^2} + c \]

Question Number : 2 Question Id : 2310982402 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical

Correct Marks : 2 Wrong Marks : 0.66

If the differential equation \(x \left(\frac{\partial y}{\partial x} \right)^2 - (x-3)^2 = 0 \) has p-discriminant relation as \(x(x-3)^2 = 0 \) and e-discriminant relation as \(x(x-9)^2 = 0 \), then the singular solution is:

Options:

1. \(x - 3 = 0 \)

2. \(x - 9 = 0 \)

3. \(x = 0 \)

4. \(x(x-3)(x-9) = 0 \)

Question Number : 3 Question Id : 2310982403 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical

Correct Marks : 2 Wrong Marks : 0.66

For the ordinary differential equation \(x^2(x-1)^2 y' - (x^2 - 1) \cos xy' - 2 \cos^2 xy = 0 \), which of the following is true?

Options:

1. 0 is regular singular point and 1 is irregular singular point

2. 0 is irregular singular point and 1 is regular singular point

3. 0 and 1 are irregular singular point
4. 0 and 1 are regular singular point

The orthogonal trajectories of the system of curves \(\left(\frac{dy}{dx} \right)^2 = \frac{a}{x} \) are:

Options:

1. \(9a(y+c)^2 = 4x^3 \)

2. \(9a(y-c)^2 = 4x^3 \)

3. \(4a(y+c)^2 = 9x^3 \)

4. \(4a(y-c)^2 = 9x^3 \)

If \(P_n(x) \) is the solution of Legendre’s second order differential equation, then \(\int_{-1}^{1} x P_n(x) P_1(x) dx \) is equal to:

Options:

1. \(\frac{6}{35} \)

2. \(\frac{4}{15} \)

3. \(\frac{6}{15} \)
Question Number : 6 Question Id : 2310982406 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66
Let \(P_n(x) \) be the solution of Legendre's second order differential equation. If the polynomial \(2 - 3x + 4x^2 \) is expressed in terms of \(P_n(x) \), then the coefficient of \(P_n(x) \) is:

Options :
1. \(-3\)
2. \(2\)
3. \(\frac{10}{3}\)
4. \(-\frac{10}{3}\)

Question Number : 7 Question Id : 2310982407 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66
If \(J_\alpha(x) \) be the solution of Bessel equation of second order differential equation, then \(\int x^4 J_\alpha(x) \, dx \) is equal to:

Options :
1. \(x^4 J_2 - 2x^3 J_3 + c \)
2. \(x^4 J_2 + 2x^3 J_3 + c \)
3. \(-x^4 J_2 + 2x^3 J_3 + c \)
4. \(-x^4 J_2 - 2x^3 J_3 + c \)
Question Number : 8 Question Id : 2310982408 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66
If the rectangle \(R \) contains the interval of existence of the solution of the initial value problem \(y' = y^2 + \sin^2 y, y(0) = 0 \), where \(R = \left\{ (x,y) : 0 \leq x \leq k, |y| < M, k > \frac{1}{2}, M > 0 \right\} \), then the interval is:
Options :
1. \(0 < x < \frac{1}{2} \)
2. \(0 \leq x \leq \frac{1}{2} \)
3. \(0 \leq x \leq 1 \)
4. \(0 \leq x < \frac{1}{2} \)

Question Number : 9 Question Id : 2310982409 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66
The integral surface of \(-x^2 p + y^2 q = z^2 \) which passes through \(2xy = x + y, 4z + 2 = 0 \) is:
Options :
1. \(yz + zx - 6xy = 2xyz \)
2. \(yz + zx + 2xy = 6xyz \)
3. \(yz + zx - 2xy = 6xyz \)
4. \(yz + zx + 6xy = 2xyz \)

Question Number : 10 Question Id : 2310982410 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66
If the partial differential equation \(\frac{\partial z}{\partial x} = x - \frac{y}{(ax^2 + y^2)} \) and \(\frac{\partial z}{\partial y} = y + \frac{x}{(x^2 + \beta^2)} \) are compatible, then \(\alpha^2 + \beta^2 \) is equal to:

1. 2
2. 4
3. 0
4. 5

The complete integral of \(2pxy + pqy - 2yz \) is:

Options:
1. \((z + ax)(a + y)^2z = be^{2y}\)
2. \((z - ax)(a + y)^2z = be^{2y}\)
3. \((z - ax)(a + y)^2z = be^{-2y}\)
4. \((z + ax)(a + y)^2z = be^{-2y}\)

If \(z = e^{ax} \phi_y(y-x) + e^{by} \phi_x(y-x) + e^{2xy} \) is the general solution of the partial differential equation \(\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} + \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} = e^{2xy} \), then \(a + b + c \) is equal to:

Options:
1. \(-\frac{5}{6}\)
Question Number : 13 Question Id : 2310982413 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66

If $\frac{\partial^2 z}{\partial u^2} + b \frac{\partial^2 z}{\partial u \partial v} + c \frac{\partial^2 z}{\partial v^2} = 0$ is canonical form of the partial differential equation $3 \frac{\partial^2 z}{\partial x^2} + 10 \frac{\partial^2 z}{\partial x \partial y} + 3 \frac{\partial^2 z}{\partial y^2} = 0$, then $a+b+c$ is equal to:

Options :
1. ✗ 1
2. ✗ 0
3. ✗ -1
4. ✗ 2

Question Number : 14 Question Id : 2310982414 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66

The singular solution of the partial differential equation $z = 2px - 3qy + \log(pq)$ is:

Options :
1. ✗ $z = 2 - \log(\delta xy)$
2. ✗ $z = -2 - \log(\delta xy)$
3. \[z = 2 \log(\delta xy) \]

4. \[z = -2 \log(\delta xy) \]

Question Number : 15 Question Id : 2310982415 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66
The general solution of the partial differential equation \(3\frac{\partial^2 z}{\partial x^2} - 10\frac{\partial^2 z}{\partial x \partial y} + 3\frac{\partial^2 z}{\partial y^2} = (x + y) \) is:

Options :
1. \[z = \phi_1(y + 3x) + \phi_2(3y + x) - \frac{1}{24}(x + y)^3 \]
2. \[z = \phi_1(y + 3x) - \phi_2(3y + x) - \frac{1}{24}(x + y)^3 \]
3. \[z = \phi_1(y + 3x) + \phi_2(3y + x) + \frac{1}{24}(x + y)^3 \]
4. \[z = \phi_1(y + 3x) - \phi_2(3y + x) + \frac{1}{24}(x + y)^3 \]

Question Number : 16 Question Id : 2310982416 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66
The surface passing through two lines \(z = 0, x = 0 \) and \(z = 0, y = 0 \) and satisfying the partial differential equation \(\frac{\partial^2 z}{\partial x^2} - 2\frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 0 \) is:

Options :
1. \[2x = y(z - x) \]
2. \[2x = z(y - x) \]
The characteristic curve of the partial differential equation \(2y \frac{\partial u}{\partial x} + (2x + y^2) \frac{\partial u}{\partial y} = 0\) passing through \((0, 1)\) is:

Options:

1. \(y^2 = -2x - 2 + 3e^x\)

2. \(y^2 = 2x + 2 - 3e^x\)

3. \(y^2 = 2x - 2 + 3e^x\)

4. \(y^2 = 2x + 2 + 3e^x\)

If \(J_n(x)\) is the solution of Bessel differential equation, then \(\int_0^\infty e^{-2x}J_0(3x)dx\) is equal to:

Options:

1. \(\frac{1}{\sqrt{5}}\)

2. \(\frac{1}{\sqrt{13}}\)
3. \(\frac{1}{\sqrt{6}} \)

4. \(\frac{1}{\sqrt{3}} \)

Question Number : 19 Question Id : 2310982419 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical

Correct Marks : 2 Wrong Marks : 0.66

Let \(u(x) \) be a continuity differentiable function taking non-negative values for \(x > 0 \) and satisfying \(u'(x) = 4u^{3/2}(x) ; u(0) = 0 \), then the differential equation has:

Options :

1. a unique solution

2. two solutions

3. no solution

4. infinite number of solutions

Question Number : 20 Question Id : 2310982420 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical

Correct Marks : 2 Wrong Marks : 0.66

If \(y(x) \) be a continuous solution of initial value problem \(y' + 2y = f(x), y(0) = 0 \), where \(f(x) = \begin{cases} 1, & 0 \leq x \leq 1 \\ 0, & x > 1 \end{cases} \), then \(y\left(\frac{3}{2}\right) \) is equal to:

Options :

1. \(\frac{\sinh(1)}{e^3} \)

2. \(\frac{\cosh(1)}{e^3} \)
If \(y(x) = xe^x \) be a solution of \(y'' + ay' + by = 0 \), \(a, b \in \mathbb{R} \), then:

Options:

1. \(a > 0, b < 0 \)

2. \(a < 0, b > 0 \)

3. \(a > 0, b > 0 \)

4. \(a < 0, b < 0 \)

Let \(y_1(x) \) and \(y_2(x) \) form a complete set of solution of differential equation \(y'' - 2xy' + \sin(e^{2x})y = 0 \), \(x \in [0,1] \) with \(y_1(0) = 0, y_1'(0) = 1, y_2(0) = 1, y_2'(0) = 1 \). Then the Wronskian \(W(x) \) of \(y_1(x) \) and \(y_2(x) \) at \(x = 1 \) is:

Options:

1. \(e^2 \)

2. \(e \)

3. \(-e^2 \)
4. $-e$

The solution of the system $x' = Ax, A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, x(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is:

Options:
1. $\begin{bmatrix} \sin t - \cos t \\ \sin t + \cos t \end{bmatrix}$
2. $\begin{bmatrix} \cos t - \sin t \\ \sin t + \cos t \end{bmatrix}$
3. $\begin{bmatrix} 2 \sin t - \cos t \\ \sin t \end{bmatrix}$
4. $\begin{bmatrix} 2 \sin t + \cos t \\ \sin t \end{bmatrix}$

The critical point of system $\frac{dx}{dt} = -4x - y, \frac{dy}{dx} = x - 2y$, is an:

Options:
1. asymptotically stable node
2. unstable node
3. asymptotically stable spiral
4. unstable spiral

Question Number: 25 Question Id: 2310982425 Question Type: MCQ Option Shuffling: Yes Negative Marks Display Text: 2/3 Option Orientation: Vertical Correct Marks: 2 Wrong Marks: 0.66

The solution of Cauchy problem for the first order partial differential equation \(\frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z \) on \(D = \{(x, y, z) | x^2 + y^2 = 1, z > 0\} \) with initial condition \(x^2 + y^2 = 1, z = 1 \) is:

Options:
1. \(z = x^2 + y^2 \)
2. \(z = (x^2 + y^2)^2 \)
3. \(z = (2 - (x^2 + y^2))^{\frac{1}{3}} \)
4. \(z = (x^2 + y^2)^{\frac{1}{3}} \)

Question Number: 26 Question Id: 2310982426 Question Type: MCQ Option Shuffling: Yes Negative Marks Display Text: 2/3 Option Orientation: Vertical Correct Marks: 2 Wrong Marks: 0.66

A surface passing through \(z = x = 0 \) and \(z = x - y = 0 \) and satisfying the partial differential equation \(\frac{\partial^2 z}{\partial x^2} - 4 \frac{\partial^2 z}{\partial x \partial y} + 4 \frac{\partial^2 z}{\partial y^2} = 0 \) is:

Options:
1. \(z = \frac{3x}{y + 3x} \)
2. \(z = \frac{3x}{2y + x} \)
3. \(z = \frac{3x}{y + 2x} \)
4. \[z = \frac{2x}{y + 3x} \]

Question Number : 27
Question Id : 2310982427
Question Type : MCQ
Option Shuffling : Yes
Negative Marks Display Text : 2/3
Correct Marks : 2
Wrong Marks : 0.66

Let \(u = u(x,y) \) be the complete integral of partial differential equation \(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = xy \) passing through the points \((0,0,1)\) and \((0,1,\frac{1}{2})\) in \((x,y,u)\)-space.

Then, the value of \(u(x,y) \) at \((-1,1)\) is:

Options:

1. ✓ 0

2. ✗ 1

3. ✗ 2

4. ✗ 3

Question Number : 28
Question Id : 2310982428
Question Type : MCQ
Option Shuffling : Yes
Negative Marks Display Text : 2/3
Correct Marks : 2
Wrong Marks : 0.66

The solution of one dimensional heat equation \(u_{xx} = \frac{1}{k} u_t, \ 0 \leq x \leq 2\pi, \ t > 0 \) and \(u(0,t) = u(2\pi,t) = 0, \ u(x,0) = \sin^2 x \) is:

Options:

1. ✗ \[\frac{4}{3} \sin x e^{-kt} - \frac{3}{4} \sin 3x e^{-2kt} \]

2. ✓ \[\frac{3}{4} \sin x e^{-kt} - \frac{1}{4} \sin 3x e^{-2kt} \]

3. ✗ \[\frac{3}{4} \sin 3x e^{-kt} - \frac{4}{3} \sin 3x e^{-2kt} \]
4. \[\frac{-3}{4} \sin x e^{-2\pi} + \frac{1}{4} \sin 3x e^{i\pi} \]

Let \(H_1 \) and \(H_2 \) be finite subgroups of \(G \). If \(O(H_1, H_2) = 2, O(H_1) = 3, O(H_2) = 4 \), then \(O(H_1 \cap H_2) \) is:

Options:

1. \(\times \) 1
2. \(\checkmark \) 6
3. \(\times \) 3
4. \(\times \) 12

The number of elements of order 2 in \(Z_2 \times Z_4 \) is:

Options:

1. \(\times \) 1
2. \(\checkmark \) 3
3. \(\times \) 4
4. \(\times \) 2
Which of following is NOT a normal subgroup?

Options:

1. ✓ The subgroup \(\langle (1,2) \rangle \) of \(S_3 \)

2. ✗ A subgroup \(H \) of \(Q_8 \) Quaternion group

3. ✗ A subgroup \(\mathbb{Z} \) of \(\mathbb{Z} \)

4. ✗ A subgroup \(H \) of group \(G \) of index 2

Question Number : 32 Question Id : 2310982432 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical Correct Marks : 2 Wrong Marks : 0.66

Which of the following is true?

Options:

1. ✗ If \(p : S_3 \to S_3 / A_3 \) is natural homomorphism, then \((1,2) \in \ker p\)

2. ✗ If \(p : S_3 \to S_3 / A_3 \) is natural homomorphism, then \((1,2) \in \text{Im } p\)

3. ✓ If \(p : S_3 \to S_3 / A_3 \) is natural homomorphism, then \((1,2) \notin \text{Im } p\)

4. ✗ \(\mathbb{Z}_n \) and \(\mathbb{Z}/n\mathbb{Z} \) are isomorphic

Question Number : 33 Question Id : 2310982433 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical Correct Marks : 2 Wrong Marks : 0.66

Let \(G \) be a group and \(H \) be a subgroup of \(G \). If \(O(G) = 7 \) and \(a \in H \), then \(a^{135} \) is equal to:

Options:
1. \(e \)

2. \(a \)

3. \(a^2 \)

4. \(a^3 \)

Question Number : 34 Question Id : 2310982434 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66

Let \(S = \{ z \in \mathbb{C} : |z| = 1 \} \) be a circle group and \(f : \mathbb{R} \rightarrow S \) s.t. \(f(x) = e^{2\pi i x} \), then \(\ker(f) \) is equal to:

Options:
1. \(\{0\} \)

2. \(\mathbb{Z} \times \mathbb{Z} \)

3. \(\mathbb{Z} \)

4. \(\mathbb{N} \)

Question Number : 35 Question Id : 2310982435 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66

If \(G \) is a cyclic group of order 12, then the number of \(Aut(G) \) are:

Options:
1. \(3 \)

2. \(4 \)
3. 5

4. 6

4. 11

Question Number : 36 Question Id : 2310982436 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3
Correct Marks : 2 Wrong Marks : 0.66
Options :

1. 5

2. 7

3. 9

4. 11

Question Number : 37 Question Id : 2310982437 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3
Correct Marks : 2 Wrong Marks : 0.66
Let \(G \) be a group and \(O(\text{Aut}(G)) > 1 \), then the \(O(G) \) satisfies:

Options :

1. \(O(G) = 2 \)

2. \(O(G) > 2 \)

3. \(O(G) = 1 \)

4. \(O(G) < 2 \)

Question Number : 38 Question Id : 2310982438 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3
Options :
The number of maximal Ideals of \(\mathbb{Z}_6 \) (the ring of integers modulo 6) are:

Options:
1. \(\mathbb{Z} \)
2. \(Z \)
3. \(2 \)
4. \(7 \)

The field of quotients of the integral domain \(\mathbb{Z}[i] = \{a + ib; a, b \in \mathbb{Z}\} \) is:

Options:
1. \(\{x + iy; x, y \in \mathbb{Z}\} \)
2. \(\{x + iy; x, y \in \mathbb{Q}\} \)
3. \(\{x + iy; x, y \in \mathbb{R}\} \)
4. \(\{x + iy; x, y \in \mathbb{C}\} \)

Let \(G = \{e, a, a^2, a^3\} \) be a cyclic group of order 4, then the characteristic subgroup of \(G \) is:

Options:
1. \(\{e, a\} \)
Question Number : 41 Question Id : 2310982441 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66
The abelian group of order 6 must be cyclic group, if it contains an element of order:

Options :
1. 2
2. 6
3. 3
4. 4

Question Number : 42 Question Id : 2310982442 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66
If \(G \) is an infinite cyclic group, then \(G \) has:

Options :
1. three generators
2. infinite generators
3. exactly one generator
4. \(\checkmark \) exactly two generators

The units of \(\mathbb{Z}[\sqrt{-5}] \) are:

Options:
1. \(\checkmark \) \(\pm 1 \)
2. \(\times \) \(\pm 5 \)
3. \(\times \) \(\pm 2 \)
4. \(\times \) \(\pm 3 \)

Let \(G \) be a cyclic group of order 121. Then the order of its group of Automorphism is:

Options:
1. \(\checkmark \) 110
2. 120
3. 121
4. 11

Which of the following is a possible candidate for the characteristics of an integral domain?

Options:
If F is a field, then which of the following is INCORRECT?

Options:
1. $F[x]$ is a Euclidean domain
2. $F[x]$ is a Principal Ideal domain
3. $F[x_1, x_2]$ is a unique factorisation domain
4. $F[x_1, x_2]$ is a Principal Ideal domain

If $f(x) = x^2 + 5x \in \mathbb{Z}_5[x]$, then the number of roots of $f(x)$ in $\mathbb{Z}_5[x]$ is:

Options:
1. 3
2. 4
Which of the following ideals is NOT a Maximal Ideal?

Options:
1. \(\langle x^1 - 1 \rangle \) in \(\mathbb{Q}[x] \)

2. \(\langle s \rangle \) in \(\mathbb{Z} \)

3. \(\langle x^2 + x + 1 \rangle \) in \(\mathbb{R}[x] \)

4. \(M_1 = \{0,3,9\} \) in \(\mathbb{Z}_{12} \)

Let \(F \) be a field such that \(a \in F \). If \(a \) is roots of \(x^7 - x \in F[x] \), then which of the following is true?

Options:
1. \(Z \subseteq F \)

2. \(Q \subseteq F \)

3. \(F \subseteq Q \)
4. \(\sqrt{3} \)

Question Number : 50 Question Id : 2310982450 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical Correct Marks : 2 Wrong Marks : 0.66
Let \(G \) be a group of order 7 and let \(f : G \to G \) be defined by \(f(x) = x^4 \). Then \(f \) is:
Options :
1. \(\times \) not one-one
2. \(\checkmark \) not onto
3. \(\times \) not a homomorphism
4. \(\times \) an isomorphism

Question Number : 51 Question Id : 2310982451 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical Correct Marks : 2 Wrong Marks : 0.66
The number of elements of order 2 of the symmetric group \(S_5 \) is:
Options :
1. \(\times \) 22
2. \(\times \) 10
3. \(\times \) 20
4. \(\checkmark \) 25

Question Number : 52 Question Id : 2310982452 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical Correct Marks : 2 Wrong Marks : 0.66
The order of \(\frac{5}{6} + \mathbb{Z} \) in the quotient group \(\mathbb{Q}/\mathbb{Z} \) of the additive group of rational numbers is:
Options :
1. \[H = S_4 \]

2. \[H \text{ is abelian} \]

3. \[[S_4 : H] = 2 \]

4. \[H \text{ is cyclic} \]

Let \(\mathbb{R} \) be the set of real numbers and let \(f_{(a,b)} : \mathbb{R}^2 \to \mathbb{R}^2 \) be defined by \(f_{(a,b)}(x,y) = (x + a, y + b) \), where \(a, b \in \mathbb{R} \).

Then the set \(G = \{ f_{(a,b)} \mid a, b \in \mathbb{R} \} \) under the composition of mappings is:

1. an abelian group

2. not a group
3. a group but not necessarily abelian

4. a group but not necessarily cyclic

Question Number : 55 Question Id : 2310982455 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66
The group \(G \) is abelian if:

Options :
1. \(|G| = p^3 \) for some prime \(p \)

2. every proper subgroup of \(G \) is cyclic

3. every subgroup of \(G \) is normal in \(G \)

4. the function \(f: G \to G \), defined by \(f(x) = x^{-1} \) for all \(x \in G \), is a homomorphism

Question Number : 56 Question Id : 2310982456 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66
Let \(N \) be a normal subgroup of \(G \). Then which of the following is true?

Options :
1. If \(G \) is non-abelian, then \(G/N \) is also non-abelian

2. If \(G \) is cyclic, then \(G/N \) is abelian

3. If \(G \) is infinite, then \(G/N \) is also infinite

4. If \(G \) is abelian, then \(G/N \) is cyclic

Question Number : 57 Question Id : 2310982457 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
The number of elements of order 15 in alternating group A_8 is:

Options:

1. $\frac{8!}{3!} \times 5$

2. $\frac{8!}{5!} \times 2$

3. $\frac{8!}{5!} \times 3$

4. $\frac{8!}{5}$

The order of the centre of a non-abelian group of order 1001 is:

Options:

1. 1

2. 7

3. 13

4. 77

Let $T: M_{2,2} \rightarrow P_2$ be a linear transformation ($M_{2,2}$ and P_2 are the real vector spaces of matrices of order 2x2 and polynomials of degree less than or equal to 2, respectively). Then, the bases of the range of T and kernel of T corresponding to the linear transformation

$$T\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = a_1 + (a_{12} + a_{21})x + a_{22}x^2$$

is:
Which of the following linear transformations is NOT invertible?

Options:

1. $T : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ is defined as $T(x_1, x_2, x_3) = (x_1, x_2, x_3)$

2. $T : P_2 \rightarrow P_2$ is defined as $T(p(x)) = p'(x)$

3. $T : M_{2\times 2} \rightarrow M_{2\times 2}$ is defined as $T \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

4. $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ is defined as $T \begin{bmatrix} x \\ y \end{bmatrix} = A \begin{bmatrix} x \\ y \end{bmatrix}$, where $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$, fixed $\theta \in \mathbb{R}$
If \(T : P_2 \rightarrow P_3 \) is the linear transformation defined by \(T(p(x)) = xp'(x) + \int_0^x p(t) \, dt \) and \(A = \begin{bmatrix} a_{ij} \end{bmatrix} \) is the 4×3 matrix of \(T \) with respect to standard bases, then the value of \(a_{35} + a_{45} \) is:

Options:
1. \(\times \) 0
2. \(\checkmark \) \(\frac{1}{3} \)
3. \(\times \) \(\frac{1}{2} \)
4. \(\times \) 1

Let a linear transformation \(T : \mathbb{R}^2 \rightarrow \mathbb{R}^3 \) be such that \(T(x, y) = (2x + y, y - x, 3x + 4y) \) then \(\text{nullity}(T) \) equals:

Options:
1. \(\times \) 4
2. \(\times \) 3
3. \(\times \) 1
4. \(\checkmark \) 0

Let \(A \) be a square matrix of order 3 with eigenvalues 2, 2 and 3. Then \(A \) will be diagonalizable if \(\text{rank}(A - 2I) \) equals:
Question Number : 64 Question Id : 2310982464 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66
Let \(A \) be a \(5 \times 5 \) matrix with eigenvalues 1 and \(-1 \) having algebraic multiplicities 2 and 3 and geometric multiplicities 2 and 2, respectively. Then the number of Jordan blocks in Jordan canonical form of \(A \) corresponding to all the eigenvalues is:
Options :
1. ✔ 4
2. ✗ 3
3. ✗ 2
4. ✗ 1

Question Number : 65 Question Id : 2310982465 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66
Let \(A = \begin{pmatrix} 0 & a & 0 \\ 0 & 0 & b \\ 0 & 0 & 0 \end{pmatrix} \), \(a \in \mathbb{R} \), \(b \in \mathbb{R} \). Then, the values of \(a \) and \(b \) for which \(A \) is diagonalizable are:
Options :
1. $\forall a, b \in R$

2. $b = 0$ and $\forall a \in R$

3. $a = 0$ and $\forall b \in R$

4. $a = 0$ and $b = 0$

Question Number : 67 Question Id : 2310982467 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66
Which of the following matrix is NOT diagonalizable?
Options :
1. $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$
2. \[
\begin{bmatrix}
1 & 0 \\
3 & 2
\end{bmatrix}
\]

3. \[
\begin{bmatrix}
0 & -1 \\
1 & 0
\end{bmatrix}
\]

4. \[
\begin{bmatrix}
1 & 1 \\
0 & 1
\end{bmatrix}
\]

Question Number : 68 Question Id : 2310982468 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66
Which of the following sets of 2×2 real matrices $M_{2\times 2}$ under the standard component wise addition and scalar multiplication is NOT a vector space?
Options :

1. $V = \{ A \in M_{2\times 2} \mid \text{trace}(A) = 0 \}$

2. $V = \{ A \in M_{2\times 2} \mid A = A^T \}$

3. $V = \{ A \in M_{2\times 2} \mid \det(A) = 0 \}$

4. $V = \{ A \in M_{2\times 2} \mid A = -A^T \}$

Question Number : 69 Question Id : 2310982469 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66
If the dimension of the vector space spanned by the row vectors \{(1,-1,1),(2,1,1),(3,0,\alpha)\} is 2, then the value of \(\alpha\) is:
Options :

1. 0
Question Number: 70 Question Id: 2310982470 Question Type: MCQ Option Shuffling: Yes Negative Marks Display Text: 2/3 Option Orientation: Vertical Correct Marks: 2 Wrong Marks: 0.66

Consider two subsets A_1 and A_2 of vector space \mathbb{R}^3 as $A_1 = \{(1,0,0),(1,2,0),(1,2,3)\}$ and $A_2 = \{(1,3,0),(-2,0,3),(0,2,1)\}$ then which of the following forms the basis for \mathbb{R}^3?

Options:
1. A_1 but not A_2
2. A_2 but not A_1
3. Both A_1 and A_2
4. Neither A_1 nor A_2

Question Number: 71 Question Id: 2310982471 Question Type: MCQ Option Shuffling: Yes Negative Marks Display Text: 2/3 Option Orientation: Vertical Correct Marks: 2 Wrong Marks: 0.66

Let x be a real 2×1 vector satisfying $x^T x = 1$. Define $A = I - 2xx^T$, where I is an identity matrix of order 2×2. Then which of the following is true?

Options:
1. $\text{trace}(A) = 1$
2. A is singular matrix
3. \(A^2 = I \)

4. \(A^2 = A \)

Question 72

Question Id: 2310982472
Question Type: MCQ
Option Shuffling: Yes
Negative Marks Display Text: 2/3
Option Orientation: Vertical
Correct Marks: 2
Wrong Marks: 0.66

Consider a linear transformation \(T: \mathbb{R}^2 \to \mathbb{R}^3 \) with \(T(1,1,1) = (1,1,1), T(1,2,3) = (-1,-2,-3) \) and \(T(1,1,2) = (2,2,4) \).

Then \(T(2,3,6) \) equals:

Options:

1. \((2,1,4) \)

2. \((2,-1,6) \)

3. \((-2,1,6) \)

4. \((-2,-1,4) \)

Question 73

Question Id: 2310982473
Question Type: MCQ
Option Shuffling: Yes
Negative Marks Display Text: 2/3
Option Orientation: Vertical
Correct Marks: 2
Wrong Marks: 0.66

Let \(A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & -2 & 0 \\ 0 & 0 & 5 \end{pmatrix} \), \(B = I + A + \ldots + A^{10} \) and \(P^{-1}AP = \text{diag}(-2, 5, 1) \). If trace of \(P^{-1}BP = \alpha 5^{11} + \beta 2^{11} + \delta \), then \(3(\alpha + \beta + \delta) \) equals:

Options:

1. \(35 \)

2. \(37 \)

3. \(39 \)
Consider the polynomial space $P(t)$ with inner product

$$< f, g > = \int_0^1 f(t)g(t)dt$$

Then, which of the following statements is true?

Options:

1. $f_1(t) = 3t - 5$ and $g_1(t) = t^2$ are orthogonal to each other

2. $f_1(t) = 3t - 1$ and $g_1(t) = t$ are orthogonal to each other

3. \[\left(\frac{3t - 1}{2} \right) \in S^2, \text{ where } S = \left\{ t, t^2 + \frac{1}{6} \right\} \subset P(t) \]

4. If $g(t) = t^2$, then $\| g \|^2$ is $\frac{1}{6}$

Which of the following statements is true for a square matrix A of order 3?

Options:

1. $x(x - 1)(x + 1)$ can be characteristic polynomial of A if A is orthogonal

2. $(x - 2)(x + 1)(x - 1)$ can be characteristic polynomial of A if A is unitary

3. $(x + 1)(x - 1)^2$ can be characteristic polynomial of A if A is idempotent
4. $x(x^2 + 4)$ can be the characteristic polynomial of A if A is skew symmetric

Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that

\[T(v_1) = v_1 + v_2, \quad T(v_2) = v_2 + v_3, \quad T(v_3) = v_3 + v_1 \]

Where $\{v_1, v_2, v_3\}$ is a basis of \mathbb{R}^3. Then, which of the following is true?

Options:
1. ✗ T is one-one but not onto
2. ✗ T is onto but not one-one
3. ✓ T is both one-one and onto
4. ✗ T is neither one-one nor onto

Consider a linear operator $T : P_2 \to P_2$ (where P_2 is the vector space of all real polynomials of degree at most 2) such that $T(1) = x^2 + x, \ T(x) = x^2 + x + 1, \ T(x^2) = 2x^2 + 3x + 1$.

Then $T^{-1}(x)$ equals:

Options:
1. ✗ $x^2 + x - 1$
2. ✓ $x^2 - x - 1$
3. ✗ $x^2 - x + 1$
4. \(x^2 + x + 1 \)

Let an inner product space on \(\mathbb{R}^2 \) be defined as \(<u, v> = u^T A v \) where
\[
A = \begin{bmatrix} 1 & -1 \\ -1 & k \end{bmatrix}, \quad k \in \mathbb{R}
\]
Then \(k \in: \)

Options:

1. \((1, \infty) \)

2. \((0, \infty) \)

3. \((0,1) \)

4. \((-1, \infty) \)

Question Number : 79 Question Id : 2310982479 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66

Which of the following statements is FALSE for a linear transformation \(T : V \rightarrow W \), where \(V \) and \(W \) are finite dimensional vector spaces?

Options:

1. \(\dim V < \dim W \Rightarrow T \text{ is not onto} \)

2. \(\text{nullity}(T) = 1 \Rightarrow T \text{ is not one-one} \)

3. \(\dim V > \dim W \Rightarrow T \text{ is one-one} \)

4. \(T \text{ is invertible} \Rightarrow T \text{ carries linearly independent sets of } V \text{ onto linearly independent sets of } W \)
Question Number: 80 Question Id: 2310982480 Question Type: MCQ Option Shuffling: Yes Negative Marks Display Text: 2/3 Option Orientation: Vertical
Correct Marks: 2 Wrong Marks: 0.66
Let U and W be two subspaces of the vector space \mathbb{R}^8 having dimensions 6 and 5, respectively. Then the minimum value of dimension of $U \cap W$ is:

Options:
1. \times 1
2. \checkmark 3
3. \times 5
4. \times 6

Question Number: 81 Question Id: 2310982481 Question Type: MCQ Option Shuffling: Yes Negative Marks Display Text: 2/3 Option Orientation: Vertical
Correct Marks: 2 Wrong Marks: 0.66
Consider the set $W = \{(1,-2,0,0)^T,(-1,3,1,-1)^T,(0,-1,0,-1)^T\}$ of vectors in \mathbb{R}^4. A vector $(\alpha, \beta, \gamma, \delta) \in \mathbb{R}^4$ will be orthogonal to W if:

Options:
1. \times $\alpha - \beta = 0$ and $\gamma - \delta = 0$
2. \times $\alpha + \beta = 0$ and $\gamma + \delta = 0$
3. \checkmark $\alpha + \gamma = 0$ and $\beta + \delta = 0$
4. \times $\alpha - \gamma = 0$ and $\beta + \delta = 0$

Question Number: 82 Question Id: 2310982482 Question Type: MCQ Option Shuffling: Yes Negative Marks Display Text: 2/3 Option Orientation: Vertical
Correct Marks: 2 Wrong Marks: 0.66
Which of the following statements is NOT true for an orthogonal matrix P and an inner product space V?

Options:
1. \(P^{-1} \) is also an orthogonal matrix

2. \((PQ^{-1})^T\) may not be orthogonal, when \(Q\) is orthogonal

3. \(<Pu, Pv> = <u, v>\) for every \(u, v \in V\)

4. \(||Pu|| = ||u||\) for every \(u \in V\)

Question Number : 83 Question Id : 2310982483 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66
Let \(A\) be a square matrix of order 2 having eigenvalues 1 and 2. Then the determinant of the matrix \(A^2 + A^{-1} + 2I\) equals:
Options :
1. \(24\)
2. \(26\)
3. \(27\)
4. \(28\)

Question Number : 84 Question Id : 2310982484 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66
Let \(A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 1 & 4 \\ -2 & -3 & 10 \end{bmatrix}\). Then for any \(b \in \mathbb{R}\), the system \(Ax = b\) will be inconsistent when \(\text{rank}(A|b)\) is:
Options :
1. \(0\)
2. 1

3. 2

4. ✓ 3

If a square matrix A is both unitary and hermitian, then A is always equal to:

Options:

1. an Identity matrix I

2. A^2

3. ✓ A^{-1}

4. 2$A + I$

Question Number : 86 Question Id : 2310982486 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3
Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66

Let $m(x)$ be the minimal polynomial and $c(x)$ be the characteristic polynomial of $A = \begin{bmatrix} 1 & 2 & -3 \\ 4 & 5 & 0 \\ 3 & 6 & 2 \end{bmatrix}$ and $f(x) = x m(x) - x^2 c(x) + x$. Then the rank of the matrix $f(A)$ is:

Options:

1. ✓ 3

2. 2
3. * * 1

4. * * 0

Which of the statement is true for a square matrix A?

Options:

1. * Eigenvectors are orthogonal to each other

2.

If E_1, E_2 are eigenvectors corresponding to distinct eigenvalues λ_1, λ_2, respectively, then $E_1 + E_2$ will be also an eigenvector

3.

If E_1 is the eigenvector corresponding to λ_1 then this will be an unique eigenvector corresponding to λ_1

4. \checkmark

Let $V_1 = \{E_1 : AE_1 = \lambda_1 E_1\} \cup \{0\}$ where λ_1 an eigenvalue of A then, V_1 will form a vector space.

Question Number : 88 Question Id : 2310982488 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical Correct Marks : 2 Wrong Marks : 0.66

Consider the vectors $v_1 = (1, 1, 1, 1), v_2 = (1, 1, 2, 4)$ and $v_3 = (1, 2, -4, -3)$. Let the vectors $\{w_1, w_2, w_3\}$ be defined as:

\[w_1 = v_1 \]
\[w_2 = v_2 - \alpha v_1 \]
\[w_3 = v_3 - \beta w_1 - \gamma w_2 \]

Then, the value of $\alpha + \beta + \gamma$ such that the vectors w_1, w_2, w_3 are orthogonal to each other is:

Options:

1. * * $-\frac{3}{2}$
The minimal polynomial of \[
\begin{pmatrix}
4 & 0 & -3 \\
4 & -2 & -2 \\
4 & 0 & -4
\end{pmatrix}
\] is:

Options:
1. \((x^2 - 4)\)
2. \((x - 2)\)
3. \((x + 2)\)
4. \((x + 2)(x^2 - 4)\)

Let \(A = \begin{pmatrix} -2 & 1 \\ 0 & -1 \end{pmatrix}\) and \(B = A + A^2 + A^3 + A^4 + A^5\). Then \(B\) equals to:

Options:
Calculate the value of \(\lim_{x \to 1^+} \left(\frac{x-1-t}{x^2-2x+2} \right)^2 \)

Options:

1. \(\frac{1}{4} \)
2. \(\frac{-1}{4} \)
3. 4
4. -4

If the function \(e^x (\cos y + i\sin y) \) is holomorphic, then its derivative would be:
1. e^{x+iy}
2. e^{x-iy}
3. $e^{(x+iy)^2}$
4. $e^{(x-iy)^2}$

Calculate the radius of the convergence of power series $\sum_{n=1}^{\infty} \frac{x^n}{n^n}$.

Options:
1. 0
2. ∞
3. 1
4. -1

Which option is true regarding the region of the convergence of the series $\sum_{n=1}^{\infty} n! x^n$.

Options:
1. The region contains only one point, that is, 0
2. The region contains no point
3. The region contains two points, that is, 0 and 1

4. The region contains infinite points

Question Number : 95 Question Id : 2310982495 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical Correct Marks : 2 Wrong Marks : 0.66
Calculate the radius of convergence of $\sum \frac{n!}{n} x^n$.
Options :
1. e
2. $-e$
3. 0
4. ∞

Question Number : 96 Question Id : 2310982496 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical Correct Marks : 2 Wrong Marks : 0.66
Calculate the radius of convergence for $\sum (4 + 3i)^n x^n$.
Options :
1. $\frac{1}{5}$
2. 5
3. $\frac{1}{5}$
4. 0
Find the domain of the convergence of the series \(\sum_{n=1}^{\infty} \left(\frac{i(x-1)}{2+i} \right)^n \).

Options:

1. Convergent for the set of values of \(x \) that lie inside the circle of radius \(\sqrt{5} \) and centre at \(x=-i \).

2. Convergent for the set of values of \(x \) that lie inside the circle of radius \(\sqrt{5} \) and centre at \(x=i \).

3. Convergent for the set of values of \(x \) that lie inside the circle of radius \(2\sqrt{5} \) and centre at \(x=-i \).

4. Convergent for the set of values of \(x \) that lie inside the circle of radius \(-\sqrt{5} \) and centre at \(x=-i \).

If \(T_1(x) = \frac{x+2}{x+3} \) and \(T_2(x) = \frac{x}{x+1} \), then the value of \(T_1^{-1}T_2(x) \) would be:

Options:

1. \(x+1 \)

2. \(x-2 \)

3. \(x-1 \)

4. \(x \)
Calculate the value of the residue of function \(\csc x \).

Options:
1. \(\times \) 0
2. \(\checkmark \) 1
3. \(\times \) -1
4. \(\times \) 2

Question Number : 100 Question Id : 2310982500 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66

Calculate the residues of \(\frac{x^2}{(x-1)(x-2)(x-3)} \) at 1, 2, 3 and infinity respectively.

Options:
1. \(\checkmark \) \(\frac{1}{2} \), -4, \(\frac{9}{2} \) and -1
2. \(\times \) \(-\frac{1}{2} \), -2, \(\frac{9}{2} \) and -1
3. \(\times \) \(\frac{1}{2} \), -2, 3 and -1
4. \(\times \) \(\frac{1}{2} \), -4, \(\frac{3}{2} \) and -1

Question Number : 101 Question Id : 2310982501 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66

Calculate the residue of \(\frac{x^2}{(x^2-1)} \) at \(x = \infty \).

Options:
1. \(\times \) 0
2. ✗ 1

3. ✓ -1

4. ✗ -1/2

The behaviour of the power series \(\sum_{n=0}^{\infty} \frac{x^{4n}}{1+4n} \) at \(x = \pm 1 \) and \(\pm i \) is:

Options:

1. ✓ Non-convergent at \(x = \pm 1 \) and \(\pm i \)

2. ✗ Convergent at \(x = \pm 1 \) and \(\pm i \)

3. ✗ Non-convergent at \(x = \pm 1 \) but convergent at \(\pm i \)

4. ✗ Convergent at \(x = \pm 1 \) but non-convergent at \(\pm i \)

Find the region of convergence of the series \(\sum_{n=0}^{\infty} \frac{(x+2)^n}{(1+n)^4n} \).

Options:

1. ✓ The radius of convergence is 4 and centre is -2

2. ✗ The radius of convergence is 2 and centre is -4

3. ✗ The radius of convergence is 4 and centre is -1
The radius of convergence is 2 and centre is 2

Question Number : 104 Question Id : 2310982504 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3
Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66

Calculate the orthogonal trajectory of the curves $x^2 - y^2 + x = c$.

Options :
1. $xy + 2y = c$
2. $xy - y = c$
3. $2xy + y = c$
4. $2xy - y = c$

Question Number : 105 Question Id : 2310982505 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3
Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66

Find the value of the integral $\int_{0}^{1+i} (x - y + ix^2) \, dz$ along the straight line from $z=0$ to $z=1+i$.

Options :
1. $\frac{i}{3}$
2. $\frac{i + 1}{3}$
3. $\frac{i + 1/3}{3}$
4. $\frac{i - 1}{3}$
Find the Taylor series representing the function \(\frac{z^2 - 1}{(z+2)(z+3)} \) in the region \(|z| < 2 \).

Options:

1. \[\sum_{n=0}^{\infty} (-1)^n \left(\frac{3}{2^n+1} + \frac{8}{3^n+1} \right) z^n \]

2. \[1 + \sum_{n=0}^{\infty} (-1)^n \left(\frac{3}{2^n+1} + \frac{8}{3^n+1} \right) z^n \]

3. \[1 + \sum_{n=0}^{\infty} (-1)^n \left(\frac{3}{2^n+1} - \frac{8}{3^n+1} \right) z^n \]

4. \[\sum_{n=0}^{\infty} (-1)^n \left(\frac{3}{2^n+1} - \frac{8}{3^n+1} \right) z^n \]

Find the Laurent’s series representing the function \(\frac{z^2 - 1}{(z+2)(z+3)} \) in the region \(2 < |z| < 3 \).

Options:

1. \[\sum_{n=0}^{\infty} (-1)^n \left(\frac{3.2^n}{2^n+1} - \frac{8.2^n}{3^n+1} \right) \]

2. \[1 + \sum_{n=0}^{\infty} (-1)^n \left(\frac{2.2^n}{2^n+1} + \frac{9.2^n}{3^n+1} \right) \]

3. \[1 + \sum_{n=0}^{\infty} (-1)^n \left(\frac{3.2^n}{2^n+1} - \frac{8.2^n}{3^n+1} \right) z^n \]

4. \[\sum_{n=0}^{\infty} (-1)^n \left(\frac{2.2^n}{2^n+1} - \frac{9.2^n}{3^n+1} \right) \]
Question Number : 108 Question Id : 2310982508 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66
What is the singularity of the function $\frac{1}{\sin z - \cos z}$ at $z = \pi/4$?

Options :

1. ✓ Simple pole singularity
2. × Isolated singularity
3. × Isolated essential singularity
4. × No singularity

Question Number : 109 Question Id : 2310982509 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66
Use Rouche’s theorem to find the number of roots of the equation $z^8 - 4z^5 + z^2 - 1 = 0$ that lie inside a circle $|z| = 1$.

Options :

1. × 2
2. × 3
3. × 4
4. ✓ 5

Question Number : 110 Question Id : 2310982510 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66
Find the residues of $\frac{z+1}{z^2(z-3)}$.

Options :

1. ✓ -4/9 and 4/9
2. ✗ -1/9 and 1/9
3. ✗ -2/9 and 2/9
4. ✗ -5/9 and 7/9

Question Number : 111 Question Id : 2310982511 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66
In a finite plane, the function having poles as the only singularity points in the finite part is known as a/an:
Options :
1. ✗ analytic function
2. ✗ entire function
3. ✗ isolated function
4. ✔ meromorphic function

Question Number : 112 Question Id : 2310982512 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66
Find the number of zeros in the polynomial \(f(z) = z^{10} - 6z^7 + 3z^3 + 1 \) in \(|z| < 1 \) using Rouche's Theorem.
Options :
1. ✗ 3
2. ✗ 5
3. ✔ 7
If the power series $\sum a_n z^n$ is convergent and $\sum |a_n z^n|$ is non-convergent, then the series $\sum_{n=0}^{\infty} a_n z^n$ is said to be:

1. divergent
2. conditionally convergent
3. convergent
4. oscillatory

Calculate the number of isolated singular points of the function $f(z) = \frac{z+3}{z^2(z^2+2)}$.

Options:
1. 1
2. 2
3. 3
4. 4

Find the value of $\int_{0}^{\infty} \frac{dz}{z^a + a^a}$ where $a > 0$.
Calculate the value of \(\int_0^\infty \frac{\log(1+z^2)}{1+z^2} \, dz \) using Contour integration.

Options:

1. \(\pi \)

2. \(\pi \log 2 \)

3. \(\pi / \log 2 \)

4. \(\log 2 / \pi \)

Find the value of \(p \) for which the series \(\sum \frac{\sin nx}{n^p} \) is uniformly convergent for all \(x \in \mathbb{R} \).

Options:

1. \(0 \)
2. ✓ 1
3. ✗ -1
4. ✗ \infty

Question Number : 118 Question Id : 2310982518 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical Correct Marks : 2 Wrong Marks : 0.66
Which of the following options is correct about the function \(f(z) = \sin x \cosh y + i \cos x \sinh y \)? Options:
1. ✓ The function is continuous as well as analytic everywhere.
2. ✗ The function is neither continuous nor analytic everywhere.
3. ✗ The function is not continuous at some points but analytic everywhere.
4. ✗ The function is continuous everywhere but not analytic at the origin.

Question Number : 119 Question Id : 2310982519 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical Correct Marks : 2 Wrong Marks : 0.66 If \(f(z) = u + iv \) is an analytic function in a domain \(D \), then choose the condition that holds true for \(f(z) \) to be constant in \(D \). Options:
1. ✓ \(f'(z) \) vanishes identically in \(D \)
2. ✗ \(f'(z) \) does not vanish identically in \(D \)
3. ✗ \(\arg f(z) \) is not a constant
4. ✗ \(|f(z)| \) is not a constant
Question Number : 120 Question Id : 2310982520 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66
Find the inverse of a point 'a' with respect to the circle |z-c|=R.
Options :
1. $c + \frac{R^2}{\bar{a} - \bar{c}}$
2. $\frac{R^2}{\bar{a} - \bar{c}}$
3. $c - \frac{R^2}{\bar{a}}$
4. $c + \frac{R^2}{\bar{a} + \bar{c}}$

Question Number : 121 Question Id : 2310982521 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66
Which of the following correctly describes a countable set?
Options :
1. A subset of a countable set is countable.
2. A subset of a countable set is not countable.
3. An infinite subset of a countable set is non-countable.
4. A subset of a countable set is countable in some interval and non-countable in some interval.

Question Number : 122 Question Id : 2310982522 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66
Find the supremum and infimum of the set $S = \{1 + (-1)^n / n : n \in \mathbb{N}\}$.
Options :
1. √ Sup S=3/2 and inf S=0

2. ✗ Sup S=0 and inf S=3/2

3. ✗ Sup S=3/2 and inf S=1

4. ✗ No supremum and infimum exist for the given set.

Question Number : 123 Question Id : 2310982523 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66
Find the supremum and infimum for the set S= \((-1)^n, n \in \mathbb{N}\).

Options:
1. √ No supremum and infimum exist for the given set.

2. ✗ Sup S=-1 and inf S=6

3. ✗ Sup S=6 and inf S=-1

4. ✗ Sup S=2 and inf S=-1

Question Number : 124 Question Id : 2310982524 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66
The sequence \(3^n/n!\) is:

Options:
1. ✗ monotone

2. ✗ monotone and bounded
3. ✔ bounded and convergent

4. ✗ monotone, bounded and convergent

The function $f(x)=x^2$ is uniformly continuous in:

Options:
1. ✗ $[-1, 2]$
2. ✔ $[0, 2]$
3. ✗ $[2, 2]$
4. ✔ $[-2, 2]$

Calculate the value of c for the function $f(x)=(x+1)(x-2)(x+3)$ for all x belonging to $[0, 1]$. Options:
1. ✔ $\frac{-2 + \sqrt{13}}{3}$
2. ✗ $\frac{-2 - \sqrt{13}}{3}$
3. ✗ -8
4. ✗ -6
Find the value of \(\int_0^1 \frac{dx}{\sqrt{1-x^2}} \).

Options:

1. □ 0

2. □ 1

3. ✔ 2

4. □ -1

Which statement of the below is true for the convergence of \(\int_0^{2a} \frac{dx}{(x-a)^2} \)?

Options:

1. ✔ The given integral does not exist and is divergent

2. □ The given integral converges to \(\pi \)

3. □ The given integral converges to \(\pi/2 \)

4. □ The given integral is oscillatory

Which of the statements below is true for the convergence of \(\int_0^\infty \cos x \, dx \)?

Options:
1. ✗ The given integral is divergent

2. ✗ The given integral converges to π

3. ✗ The given integral converges to $\pi/2$

4. ✓ The given integral is oscillatory

Calculate the value of $\lim_{n \to \infty} \frac{3+2\sqrt{n}}{\sqrt{n}}$

Options:
1. ✗ 0

2. ✗ 1

3. ✓ 2

4. ✓ 3

Find the value of $\lim_{n \to \infty} \left[\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \ldots + \frac{1}{\sqrt{n^2+n}} \right]$.

Options:
1. ✗ 0

2. ✓ 1
3. ✗ -1

4. ✗ 2

Question Number : 132 Question Id : 2310982532 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66

Find the value of \(\lim_{n \to \infty} \frac{1}{n} \left[1 + 2^{1/2} + 3^{1/3} + \cdots + n^{1/n} \right] \).

Options :
1. ✗ 0
2. ✓ 1
3. ✗ -1
4. ✗ 2

Question Number : 133 Question Id : 2310982533 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66

Which of the statements is correct for convergence of series, \(1 - \frac{1}{3.2^2} + \frac{1}{5.3^2} - \frac{1}{7.4^2} + \cdots \) according to Abel’s test?

Options :
1. ✓ The series is Convergent
2. ✗ The series is Divergent
3. ✗ The series is Oscillating
4. ✗ The test for convergence fails

Question Number : 134 Question Id : 2310982534 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Find the continuity of \(f(x) = \sin x^2 \).

Options:

1. ✗ Uniformly continuous at \([0, \infty)\)

2. ✔ Not-uniformly continuous at \([0, \infty)\)

3. ✗ Continuous and bounded at \([0, \infty)\)

4. ✗ Second kind discontinuity at \(x=0\)

Find the value of \(\frac{\sin \alpha - \sin \beta}{\cos \beta - \cos \alpha} \) if \(0 < \alpha < \theta < \beta < \pi/2\).

Options:

1. ✗ \(\tan \theta\)

2. ✔ \(\cot \theta\)

3. ✗ \(\sin \theta\)

4. ✗ \(\cos \theta\)

Find the extreme values of the function \((x-3)^5(x+1)^4\).

Options:

1. ✔ \(-1, 3, 7/9\)
2. $-1, 3, 7$

3. $-1, 3, 9$

4. $-1, 2/5, 7/9$

Question Number : 137 Question Id : 2310982537 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : $2/3$
Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66
Compute the value of $\int_{1}^{2} f(x) \, dx$ using Riemann integral, where $f(x) = 3x + 1$.
Options :

1. 0

2. $1/3$

3. $5/2$

4. $11/2$

Question Number : 138 Question Id : 2310982538 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : $2/3$
Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66
Compute the value of $\int_{-1}^{1} f(x) \, dx$ using Riemann integral where $f(x) = |x|$.
Options :

1. 0

2. -1

3. 1
Question Number : 139 Question Id : 2310982539 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical Correct Marks : 2 Wrong Marks : 0.66

Compute the value of \(\int_0^t \sin x \, dx \) using Riemann integral.

Options :

1. ✓ 1 - \cos t

2. ✗ \sin t

3. ✗ \cos t

4. ✗ \sin t - 1

Question Number : 140 Question Id : 2310982540 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical Correct Marks : 2 Wrong Marks : 0.66

Which of the following statements is/are true for any metric space \((X, d)\):

1. The union of an arbitrary family of open sets is open
2. The intersection of a finite number of open sets is open
3. The union of an arbitrary family of open sets is closed
4. The intersection of a finite number of open sets is closed

Options :

1. ✓ Only 1 and 2

2. ✗ Only 2 and 3

3. ✗ Only 1 and 4

4. ✗ 1, 2, 3 and 4
Which of the following statements is/are true for any metric space \((X, d)\):

1. The union of a finite number of closed sets is closed
2. The intersection of an arbitrary family of closed sets is closed
3. The union of an arbitrary family of closed sets is closed
4. The intersection of a finite number of closed sets is closed

Options:

1. ✗ 1, 2, 3 and 4

2. ✗ Only 2 and 3

3. ✗ Only 1 and 4

4. ✓ Only 1 and 2

Which of the following statement(s) hold(s) true for two subsets \(A\) and \(B\) of a metric space \((X, d)\):

1. \(\text{int } A\) is the largest open set contained in \(A\)
2. \(A\) is open if and only if \(A = \text{int } A\)
3. \(\text{Int } (A \cap B) = (\text{int } A) \cap (\text{int } B)\)

Options:

1. ✗ Only 1

2. ✗ Only 2

3. ✗ Only 2 and 3

4. ✓ 1, 2 and 3
If \(A \) is a subset of a metric space, then which of the following holds true?

Options:

1. \(\overline{A} = A \cup D(A) \)

2. \(\overline{A} = A \cap D(A) \)

3. \(\overline{A} = A \cup D(A) \)

4. \(\overline{A} = A \cup D(\overline{A}) \)

Question Number : 144 Question Id : 2310982544 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical Correct Marks : 2 Wrong Marks : 0.66

In a metric space, the intersection of finitely many open sets is:

Options:

1. closed

2. open

3. Open for an arbitrary family

4. Closed for a finite number

Question Number : 145 Question Id : 2310982545 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical Correct Marks : 2 Wrong Marks : 0.66

Which statement(s) of the following is true for the convergence of Gamma function \(\int_0^{\infty} x^{n-1} e^{-x} \, dx \) ?

Options:

1. It is convergent for \(n > 0 \)

2. It is divergent for \(n \leq 0 \)
3. ✗ It is oscillatory

4. ✔ It is convergent for $n > 0$ and divergent for $n \leq 0$

Question Number : 146 Question Id : 2310982546 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66
Let (a, b) be an open interval and p be any point of (a, b). The condition that every open interval is a neighbourhood of each of its points is:
Options :
1. ✔ $(p - \varepsilon, p + \varepsilon) \subseteq (a, b)$

2. ✗ $(p + \varepsilon) \subseteq (a, b)$

3. ✗ $(p - \varepsilon) \subseteq (a, b)$

4. ✗ $(p - \varepsilon, p + \varepsilon) \equiv (a, b)$

Question Number : 147 Question Id : 2310982547 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66
Which of the following statements is/are true for the convergence of a sequence (X_n), which is monotonic increasing and bounded above?
1. It converges to its least upper bound
2. It converges to its greatest lower bound
3. It diverges to its least upper bound
4. It oscillates
Options :
1. ✔ Only 1

2. ✗ Only 2

3. ✗ Only 2 and 3
4. 2, 3 and 4

Question Number : 148 Question Id : 2310982548 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66
Compute the convergence of sequence $a_n = \left(1 + \frac{1}{n}\right)^n$ and the range of its limit.
Options :
1. Monotonic decreasing and bounded above, range lies between 2 and 3.
2. Monotonic decreasing and lower bounded, range lies between 1 and 3.
3. Monotonic increasing and bounded above, range lies between 2 and 3.
4. Monotonic increasing and lower bounded, range lies between 1 and 3.

Question Number : 149 Question Id : 2310982549 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66
If a function is differentiable in $[a, b]$ and $f'(a)$, $f'(b)$ have opposite signs, then there exists at least one point $c \in (a, b)$ such that:
Options :
1. $f'(c)=1$
2. $f'(c)=0$
3. $f'(c)=\text{infinite}$
4. $f'(c)=f(a)$

Question Number : 150 Question Id : 2310982550 Question Type : MCQ Option Shuffling : Yes Negative Marks Display Text : 2/3 Option Orientation : Vertical
Correct Marks : 2 Wrong Marks : 0.66
Which statement(s) of the following is/are true about the continuity of the function \(f(x) = \tan^{-1}(1/x) \):

1. First kind discontinuity at \(x=0 \)
2. Second kind discontinuity at \(x=0 \)
3. Continuous at \(x=0 \)
4. Uniform continuous at \(x=0 \)

Options:

1. ✗ 1, 2, 3 and 4

2. ✗ Only 2, 3 and 4

3. ✔ Only 1

4. ✗ Only 1 and 2